The Microwave Rotational Spectra of 1-Bromo-2,2-Difluoroethylene and the Bromine Nuclear Quadrupole Coupling Tensor

F. Oldag and D. H. Sutter

Abteilung Chemische Physik im Institut für Physikalische Chemie der Christian-Albrechts-Universität zu Kiel

Z. Naturforsch. 46a, 513-526 (1991); received March 14, 1991

The first assignment of the vibronic ground state rotational spectra for $F_2C=CH^{79}Br$ and $F_2C=CH^{81}Br$ is reported. Only μ_b -type transitions could be observed. This indicates, that the C-F and C-Br bond dipole moments are almost equal despite of the large difference in the Pauling electronegativities of the two halogen atoms. The complete quadrupole Br-coupling tensors including their orientation with respect to the molecular principal inertia axes could be determined and are discussed within the Townes-Dailey model. A partial r_0 -structure is proposed.

Introduction

We have initiated the present study in view of our current interest in the effects of fluorine substitution on the geometries, magnetic properties and bonding in small molecules. The rather dense microwave spectrum of $F_2C=CHBr$ has never been studied before. So, in this initial study, we report the assignment of the spectrum and we discuss the observed bromine nuclear quadrupole coupling. Detailed studies of the Stark effect, the rotational Zeeman effect and of the ^{13}C -isotopic species are planned for the near future.

Experimental

A sample of 1-bromo-2,2-difluoroethylene, a gas at room temperature, was obtained from Fluorochem Ltd., Old Glossop (Great Britain) and was used without further purification. A rough prediction of the spectrum was calculated from an approximate structure, guessed as a composite from the structures of $F_2C=CH_2$ [1] and of $H_2C=CHBr$ [2], see Figure 1.

From this first prediction with rotational constants A = 10.85 GHz, B = 1.41 GHz, C = 1.25 GHz for the ⁸¹Br-species and A = 10.85 GHz, B = 1.43 GHz and C = 1.26 GHz for the ⁷⁹Br-species, near prolate top μ_a -and μ_b -type spectra were calculated. Transitions, involving levels with larger K_a -quantum numbers ($K_a = 1.26$ GHz)

Reprint requests to Prof. Dr. D. H. Sutter, Institut für Physikalische Chemie, Universität Kiel, Olshausenstraße 40, W-2300 Kiel, FRG.

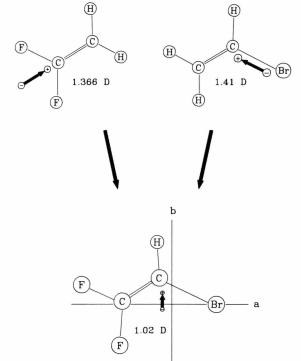


Fig. 1. Within an additivity scheme for bond moments, superposition of the electric dipole moment vectors of 1,1-difluoroethylene and bromoethylene should lead to the dipole moment of 1-bromo-2,2-difluoroethylene (the ethylene-configuration, which is additionally produced that way has zero dipole moment). Since the a-components largely compensate in such a superposition, one expects the dipole moment to be closely aligned to the *b*-axis of the moment of inertia tensor. This explains why no μ_a -type transitions and no rapid μ_a -type Stark effects could be observed.

 $0932\text{-}0784 \,/\, 91 \,/\, 0600\text{-}0513 \,\$\, 01.30 / 0. - Please \ order \ a \ reprint \ rather \ than \ making \ your \ own \ copy.$

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung "Keine Bearbeitung") beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen.

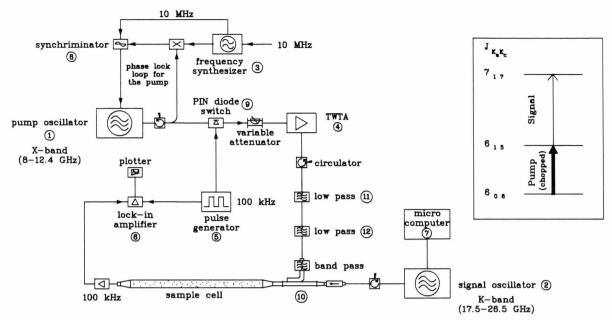


Fig. 2. Block diagram of the double resonance modulation spectrometer, which was set up to confirm the assignment of the spectra.

- 1) Sweeper. Hewlett Packard 8690 B with 8696 A plug in.
- 2) 10 MHz-26.5 GHz synthesized sweeper Hewlett Packard
- Frequency synthesizer 470–1000 MHz, Rohde & Schwarz XSU, XUC.
- 4) X-band TWT amplifier Hughes 1177 H, 10 W.
- 5) Pulse generator E-H Research Laboratories 137-NV.
- 6) Lock-in amplifier Ithaco Dynatrac 391 A.

- 7) Micro computer Commodore C 64.
- 8) Frequency synchriminator Rohde & Schwarz XKG.
- PIN diode switch Hewlett Packard 33144 A with TTLdriver 33190 B.
- 10) X-band multihole directional coupler Waveline 674-3 (3 dB) with band pass filter AEL F 2001.
- 11) Coaxial low pass filter 15 GHz, AEL MW 1140-2.
- 12) Coaxial low pass filter 14 GHz, K & L Micro FLR 14.0.

K-quantum number of the limiting prolate symmetric top) were expected to exhibit rather fast Stark effects due to μ_a -matrix elements connecting the near-degenerate K_a -doublets. An extensive search with our Stark effect-modulated spectrometers [3], run at a low modulation field strength, failed to detect any such transitions. Thus, μ_a must be exceedingly small, even smaller than the value predicted from a vector addition of the reported dipole moments of $F_2C=CH_2$ [4] and $H_2C=CHBr$ [5] as also shown in Figure 1.

In a second run high-field Stark modulated spectra as well as microwave Fourier transform spectra were recorded in the X- and K-band region (8 to 26 GHz) and typical bromine quadrupole hfs patterns were searched for. Looking for the expected quadrupole hfs pattern, the $J_{0J} \rightarrow J_{1J-1}$ $\mu_{\rm b}$ -type Q-branch could be tentatively assigned for both isotopic species. To confirm this tentative assignment, a microwave-microwave double resonance spectrometer was assembled

as shown in Figure 2. In this spectrometer the strong X-band pump radiation is set on a tentatively assigned Q-branch transition. It is chopped (100 kHz on/off) and the signal frequency is swept over a K-band region in which a yet unassigned transition, connected to the pump transition by a three level double resonance scheme, is suspected. The insert of Fig. 2 shows an example. With lock-in detection at the modulation frequency of the pump, only those transitions which involve one of the pumped states are modulated and detected.

The correct assignment of the transitions could be easily confirmed that way, as is demonstrated in Figs. 3 and 4.

Pumping on the $7_{07} \rightarrow 7_{16}$ transition, the $7_{16} \rightarrow 7_{25}$ transition could be assigned, which gave access to the $J_{1J-1} \rightarrow J_{2J-2}$ Q-branch. Pumping on the $5_{05} \rightarrow 5_{14}$ and $6_{06} \rightarrow 6_{15}$ transitions, respectively, the $5_{05} \rightarrow 6_{16}$ and $6_{06} \rightarrow 7_{17}$ R-branch transitions could be assigned.

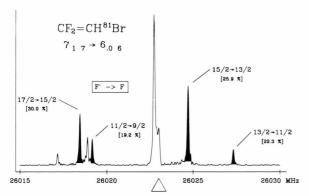


Fig. 3. 15 MHz section of a MWFT power spectrum of 1-bromo-2,2-difluoroethylene, which shows the four most intense quadrupole hfs satellites of the $7_{17} \rightarrow 6_{06}$ rotational transition of CF₂=CH⁸¹Br. The additional four lines turned out to belong to the $7_{25} \rightarrow 7_{16}$ Q-branch transition of the same isotopic species. For the final assignment a double resonance experiment was carried out (see Figs. 2 and 4). The experimental conditions were: Sample pressure: 91 Pa (7 mTorr); temperature: -43°C; polarization frequency: 26 023,000 MHz; delaytime after the end of the pulse: 2500 ns; sampling rate: 10 ns; 1 k data points with 3072 zeros added prior to the Fourier transformation. Relative satellite intensities of the satellites, as they would be observed in a cw-spectrometer, are given in brackets. Intensity deviations as seen here are typical for MWFT spectra. They reflect differences in the polarization efficiency due to different offsets with respect to the frequency in the polarizing pulse.

This did lead to sufficiently accurate rotational constants to identify in total 40 rotational transitions for the ⁷⁹Br species and 38 for the ⁸¹Br species.

The spectra were analyzed using the effective Hamiltonian

$$\hat{H}_{\text{eff}}/h = \hat{H}_{\text{R}}/h + \hat{H}_{\text{CD}}/h + \hat{H}_{\text{O}}/h \tag{1}$$

with

$$\hat{H}_{\rm R}/h = A\,\hat{J}_{\rm a}^2 + B\,\hat{J}_{\rm b}^2 + C\,\hat{J}_{\rm c}^2\,,$$
 (1 a)

$$\begin{split} \hat{H}_{\text{CD}}/h &= -D_J \hat{J}^4 - D_{JK} \hat{J}^2 \hat{J}_a^2 - D_K \hat{J}_a^4 \\ &- 2 \, \delta_J \, \hat{J}^2 (\hat{J}_b^2 - \hat{J}_c^2) \\ &- 2 \, R_6 \, [3 \, \hat{J}_b^2 \, \hat{J}_c^2 + \hat{J}_c^2 \, \hat{J}_b^2) - \hat{J}_b^4 - \hat{J}_c^4] \;, \end{split} \tag{1 b}$$

$$\hat{H}_{\rm Q}/h = + (1/6) \sum_{i} \sum_{j} Q_{ij} V_{ij}/h$$
 (1 c)

A, B, C rotational constants;

 \hat{J}_{a} , \hat{J}_{b} , \hat{J}_{c} operators corresponding to the components of the rotational angular momentum in direction of the molecular principal inertia axes measured in units of \hbar ;

 $D_{J}, D_{JK}, D_{K}, \delta_{J}, R_{6}$ centrifugal distortion constants up to fourth order,

 Q_{ij} components of the Br nuclear quadrupole moment tensor;

 $-V_{ij}$ components of the intramolecular electric field gradient tensor at the position of the Br nucleus and caused by the extranuclear charge distribution.

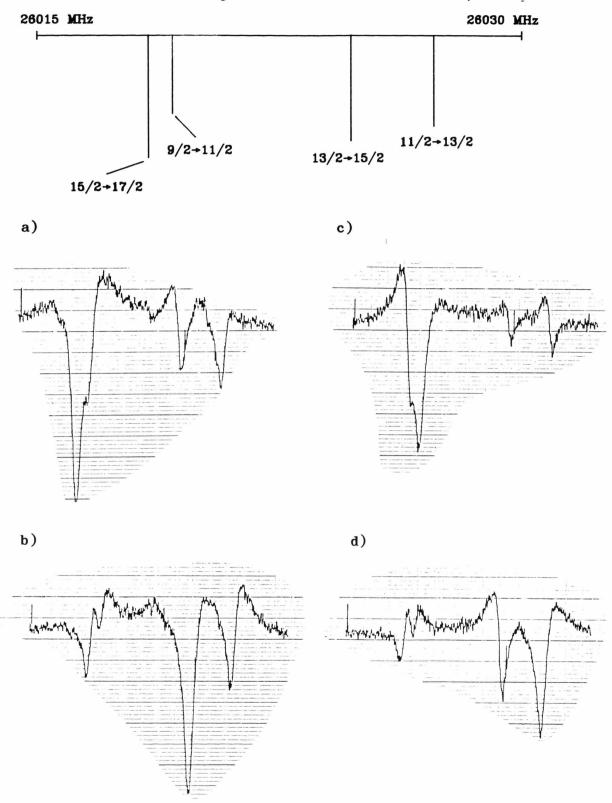
This Hamiltonian includes the bromine nuclear quadrupole coupling, $\hat{H}_{\rm Q}$, as well as centrifugal distortion corrections, $\hat{H}_{\rm CD}$, up to fourth order. It is given in frequency units. For the derivation of the fourth order centrifugal distortion Hamiltonian we refer to [6, 7]. For a general discussion of nuclear quadrupole coupling we refer to [8].

The Hamiltonian matrix was set up in the coupled basis for the limiting symmetric top, $|J, K_a, I, F, M_F\rangle$ [9]. This matrix factorizes into F-blocks (F = quantum number corresponding to the overall angular momentum including the spin of the bromine nucleus, I, and the rotational angular momentum, I, but neglecting all other spins). The F-blocks were diagonalized numerically. The transition strengths were obtained by the corresponding transformation of the direction cosine matrix elements. Our program $\langle HFS \rangle$ [10] was used for the calculations.

Because of the small inertia defect the equilibrium configuration is clearly planar. Therefore, there are only four nonzero components of the electric field gradient tensor, caused by extra-nuclear charges, i.e. $-V_{aa}$, $-V_{bb}$, $-V_{cc}$, and $-V_{ab}$, where the diagonal elements are linearly dependent by Poisson's equation.

$$V_{aa} + V_{bb} + V_{cc} = 0. (2)$$

Thus only


$$(\chi_{bb} + \chi_{cc}) = e Q (V_{bb} + V_{cc})/h,$$

$$(\chi_{bb} + \chi_{cc}) = e Q (V_{bb} - V_{cc})/h \quad \text{and}$$

$$\chi_{ab} = e Q V_{ab}/h$$

were fitted to the observed line frequencies. Here Q stands for the so called nuclear quadrupole moment of the 79 Br and 81 Br nucleus, respectively. e stands for the proton charge, and V_{aa} etc. are the vibronic ground state expectation values for the second derivatives of that part of the intramolecular Coulomb potential which originates from charges outside the bromine nucleus.

A global fit was performed, i.e. the rotational constants, the centrifugal distortion constants and

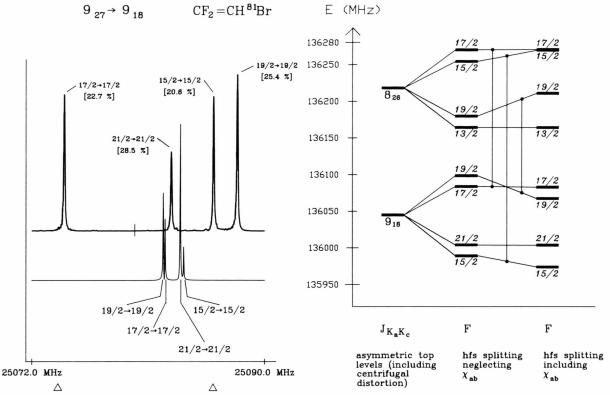


Fig. 5. Some hfs patterns such as the one of the $9_{27} \rightarrow 9_{18}$ rotational transition of $\text{CF}_2 = \text{CH}^{81}\text{Br}$ carry direct information on the off-diagonal quadrupole coupling tensor element χ_{ab} . This is caused by accidental close degeneracies of asymmetric top states connected by matrix elements due to χ_{ab} (compare Figure 6). The upper trace shows the experimental spectrum. The lower trace shows a simulation calculated under the neglect of χ_{ab} .

Fig. 6. hfs matrix elements associated with χ_{ab} are off-diagonal in the rotational quantum numbers JK_aK_c . Therefore, in most cases they only lead to minor shifts of the hfs sublevels (\rightarrow second order perturbation theory). However, in the case of accidental close degeneracies shown here, these shifts can become substantial. Vertical connections indicate nonvanishing hfs matrix elements associated with χ_{ab} . The 9_{18} state is involved as the lower state in the heavily perturbed hfs pattern shown in Figure 5.

the three quadrupole coupling constants $(\chi_{bb} + \chi_{cc})$, $(\chi_{bb} - \chi_{cc})$, and χ_{ab} were fitted simultaneously.

In view of the sufficiently close "accidental degeneracy" of different rotational states, also χ_{ab} could be determined with high accuracy (comp. Figs. 5 and 6).

In Tables 1 and 2 we present our observed and assigned transition frequencies. In Tables 3 and 4 we present the molecular parameters together with the correlation matrix of the fit.

Discussion

A) Bromine Nuclear Quadrupole Coupling

Sufficiently close accidental degeneracies allowed for an accurate experimental determination of the off-diagonal coupling constants, χ_{ab} . Thus the quadrupole coupling tensors of both isotopic species could be completely determined including their orientation with respect to the molecular principal inertia axes.

Fig. 4. Double resonance spectra corresponding to the MWFT spectrum shown in Figure 3. The hfs pattern of the $7_{16} \rightarrow 7_{25}$ transition does not show up any more since its intensity is not modulated by the pump radiation. The different intensity patterns arise because of different settings of the pump frequency: a) pump at 11 294.70 MHz corresponding to the $F = 15/2 \rightarrow F' = 15/2$ satellite of the $6_{06} \rightarrow 60_{15}$ transition; b) pump set to 11 299.66 MHz $(9/2 \rightarrow 9/2$ satellite); c) pump set to 11 271.92 MHz $(13/2 \rightarrow 13/2$ satellite); d) pump set to 11 277.30 MHz $(11/2 \rightarrow 11/2)$ satellite). The "bar spectrum" gives the relative hfs intensities as they would be observed in a cw-spectrometer.

Table 1. Assigned rotational transitions for the vibronic ground state of $F_2C=CH^{79}Br$. Only μ_b -type transitions could be observed. The calculated frequencies were obtained from the molecular parameters presented in Table 3 by numerical diagonalization of the Hamiltonian matrix corresponding to (1). As experimental frequencies we present our microwave Fourier transform results. They were directly fitted to the observed transient emission signals [25].

J'	K'_a	K_c'	→ J	K_a	K_c	F'	F	v _{exp} [MHz]	v _{center} [MHz]	v _{calc.} [MHz]	v _{expcalc.} [kHz]
a) μ	ι _ь -t	уре-	Q-bi	anc	h-trai	nsitions					
2 3	1	1 2	2 3	0	2 3	5/2 3/2 5/2 7/2 9/2	5/2 3/2 5/2 7/2 9/2	9 565.617 9 926.594 9 867.470 9 856.446 9 895.238	9 614.587 9 884.108	9 565.621 9 926.592 9 867.474 9 856.450 9 895.237	-3.7 1.5 -3.6 -4.4 1.3
3	2	1	3	1	2	3/2 5/2 7/2 9/2	3/2 5/2 7/2 9/2	27 599.490 27 537.043 27 498.935 27 570.871	27 543.336	27 599.500 27 537.041 27 498.921 27 570.871	-9.6 2.2 14.1 0.5
4	1	3	4	0	4	7/2 9/2	7/2 9/2	10 238.185 10 225.654	10 251.913	10 238.187 10.225.660	-2.2 -6.4
5	1	4	5	0	5	7/2 9/2 11/2 13/2	7/2 9/2 11/2 13/2	10 742.148 10 713.030 10 705.544 10 735.796	10 725.105	10 742.146 10.713.028 10 705.546 10 735.792	2.2 2.1 -2.4 4.3
5	2	3	5	1	4	7/2 9/2 11/2 13/2	7/2 9/2 11/2 13/2	26 854.423 26 835.958 26 828.613 26 848.972	26 840.587	26 854.410 26 835.959 26 828.611 26 848.978	13.4 -1.4 1.7 -5.6
5	2	4	5	1	5	7/2 9/2 11/2 13/2	7/2 9/2 11/2 13/2	29 402.698 29 351.482 29 337.389 29 387.993	29 368.279	29 402.705 29.351.495 29.337.396 29 387.986	$ \begin{array}{r} -7.4 \\ -12.9 \\ -7.4 \\ 7.3 \end{array} $
6	1	5	6	0	6	11/2 13/2 15/2	11/2 13/2 15/2	11 301.854 11 295.227 11 322.653	11 312.334	11 301.853 11 295.230 11 322.654	0.6 -3.4 -0.4
6	2	4	6	1	5	9/2 11/2 13/2 15/2	9/2 11/2 13/2 15/2	26 418.689 26 408.553 26 405.305 26 416.956	26 411.648	26 418.687 26.408.551 26 405.306 26 416.946	1.9 2.5 -0.5 10.3
6	2	5	6	1	6	11/2 13/2 15/2	11/2 13/2 15/2	29 876.293 29 874.419 29 915.513	29 898.785	29 876.296 29 874.427 29 915.504	-2.5 -8.1 9.2
7	1	6	7	0	7	11/2 13/2 15/2 17/2	11/2 13/2 15/2 17/2	12 038.072 12 013.045 12 007.556 12 033.754	12 023.534	12 038.074 12 013.046 12 007.555 12 033.751	$ \begin{array}{r} -1.8 \\ -0.7 \\ 1.3 \\ 2.8 \end{array} $
7	2	5	7	1	6	11/2 13/2 15/2 17/2	11/2 13/2 15/2 17/2	25 954.963 25 950.153 25 947.820 25 954.765	25 950.941	25 954.961 25 950.151 25 947.815 25 954.775	2.1 2.4 4.9 -10.5
7	2	6	7	1	7	11/2 13/2 15/2 17/2	11/2 13/2 15/2 17/2	30 541.802 30 506.465 30 499.794 30 534.955	30 520.150	30 541.795 30 506.455 30 499.787 30 534.952	6.4 9.9 7.3 2.9
8	2	6	8	1	7	13/2 15/2 17/2 19/2	13/2 15/2 17/2 19/2	25 478.933 25 490.639 25 475.938 25 509.113	25 476.190	25 478.935 25 490.638 25 475.938 25 509.116	$ \begin{array}{r} -1.7 \\ 0.9 \\ 0.4 \\ -3.1 \end{array} $
8		7	8	1	8	13/2 15/2 17/2	13/2 15/2 17/2	31 251.957 31 220.714 31.215.488	31 233.223	31 251.956 31 220.716 31 215.494	$ \begin{array}{r} 1.6 \\ -2.6 \\ -6.3 \end{array} $
9	1	8	9	0	9	15/2 21/2	$\frac{15/2}{21/2}$	13 860.305 13 872.044	13 861.563	13 860.309 13 872.042	-3.8 2.1

Table 1 (continued)

$J' K'_a K'_c$	$\rightarrow J K_a K_c$	F'	F	v _{exp} [MHz]	v _{center} [MHz]	v _{calc.} [MHz]	v _{expcalc.} [kHz]
9 2 7	9 1 8	15/2 17/2 19/2 21/2	15/2 17/2 19/2 21/2	25 027.357 25 009.041 25 036.945 25 006.759	25 006.890	25 027.358 25 009.024 25 036.962 25 006.760	-0.8 17.8 -17.1 -1.2
9 2 8	9 1 9	15/2 17/2 19/2 21/2	15/2 17/2 19/2 21/2	32 053.889 32 024.131 32 022.911 32 051.492	32 038.785	32 053.897 32 024.132 32 022.904 32 051.486	-7.6 -1.1 6.9 6.2
10 2 8	10 1 9	17/2 19/2 21/2 23/2	17/2 19/2 21/2 23/2	24 562.881 24 563.007 24 561.769 24 563.926	24 563.770	24 562.887 24.563.005 24 561.771 24 563.926	$ \begin{array}{r} -6.0 \\ 2.0 \\ -1.7 \\ -0.5 \end{array} $
10 2 9	10 1 10	17/2 19/2 23/2	17/2 19/2 23/2	32 953.358 32 927.276 32 949.695	32 937.483	32 953.364 32 927.257 32 949.697	-5.5 19.6 -2.4
11 2 9	11 1 10	19/2 21/2 23/2 25/2	19/2 21/2 23/2 25/2	24 167.905 24 167.499 24 166.688 24 168.479	24 168.154	24 167.912 24 167.500 24 166.689 24 168.481	$ \begin{array}{r} -6.1 \\ -0.6 \\ -0.5 \\ -2.5 \end{array} $
12 2 10	12 1 11	21/2 23/2 25/2 27/2	21/2 23/2 25/2 27/2	23 841.421 23 840.486 23 839.708 23 841.863	23 841.269	23 841.416 23 840.482 23 839.710 23 841.863	5.4 3.8 -1.7 0.1
13 1 12	13 0 13	23/2 25/2 27/2 29/2	23/2 25/2 27/2 29/2	19 499.070 19 472.297 19 469.828 19 495.811	19 484.142	19 499.072 19 472.293 19.469.824 19 495.808	-1.5 3.3 4.3 2.6
13 2 11	13 1 12	23/2 25/2 27/2 29/2	23/2 25/2 27/2 29/2	23 604.136 23 602.524 23 601.660 23 604.557	23 603.604	23 604.138 23 602.521 23 601.658 23 604.563	$ \begin{array}{r} -1.8 \\ 2.2 \\ 1.9 \\ -6.1 \end{array} $
14 1 13	14 0 14	25/2 27/2 29/2 31/2	25/2 27/2 29/2 31/2	21 348.068 21 320.969 21 318.611 21 345.037	21 333.097	21 348.076 21 320.973 21 318.613 21 345.037	$ \begin{array}{r} -7.7 \\ -4.4 \\ -1.5 \\ -0.4 \end{array} $
14 2 12	14 1 13	25/2 27/2 29/2 31/2	25/2 27/2 29/2 31/2	23 475.248 23 472.924 23 471.794 23 475.795	23 474.393	23 475.254 23 472.913 23 471.798 23 475.793	-6.1 11.6 -4.1 2.1
b) μ_b -type-	-R-branch-tran	sitions					
3 2 2	2 1 1	5/2 7/2 9/2	3/2 5/2 7/2	35 982.299 35 959.334 35 998.003	35 989.137	35 982.309 35 959.337 35 998.005	-10.3 -2.7 -2.6
4 1 4	3 0 3	5/2 7/2 9/2 11/2	3/2 5/2 7/2 9/2	19 432.308 19 426.550 19 415.785 19 413.385	19 416.423	19 432.291 19 426.536 19 415.774 19 413.370	16.8 14.2 11.1 14.9
5 1 5	4 0 4	7/2 9/2 13/2	5/2 7/2 11/2	21 721.340 21 732.566 21 723.440	21 727.430	21 721.332 21 732.559 21 723.431	8.1 6.9 8.8
6 1 6	5 0 5	9/2 11/2 13/2 15/2	7/2 9/2 11/2 13/2	23 992.702 23 980.291 23 967.992 23 962.650	23 967.080	23 992.693 23 980.296 23 967.985 23 962.555	9.0 -5.0 7.4 4.5
6 0 6	5 1 5	9/2 11/2 13/2 15/2	7/2 9/2 11/2 13/2	8 206.034 8 202.105 8 196.734 8 198.545	8 199.180	8 206.039 8 202.110 8 196.736 8 198.542	-4.9 -4.7 -1.8 2.7

Table 1 (continued)

J'	K'_a	K_c'	→ J	K_{a}	K_{c}	F'	F	v _{exp} [MHz]	v _{center} [MHz]	v _{calc.} [MHz]	v _{expcalc.} [kHz]
7	1	7	6	0	6	11/2 13/2 15/2 17/2	9/2 11/2 13/2 15/2	26 139.880 26 149.774 26 146.529 26 139.206	26 143.991	26 139.882 26 149.771 26 146.529 26 139.212	-2.1 2.9 -0.4 -5.2
7	0	7	6	1	6	13/2 15/2 17/2	11/2 13/2 15/2	11 331.632 11 334.950 11 339.363	11 338.606	11 331.637 11 334.953 11 339.362	-5.4 -3.2 1.0
8	1	8	7	0	7	13/2 15/2 17/2 19/2	11/2 13/2 15/2 17/2	28 263.705 28 273.912 28 271.719 28 263.592	28 268.448	28 263.708 28 273.919 28 271.719 28 263.604	$ \begin{array}{r} -2.5 \\ -6.8 \\ 0.0 \\ -12.0 \end{array} $
8	0	8	7	1	7	15/2 17/2	13/2 15/2	14 510.131 14 506.956	14 511.039	14 510.136 14 506.962	-5.3 -6.0
9	1	9	8	0	8	15/2 17/2 19/2 21/2	13/2 15/2 17/2 19/2	30 347.141 30 357.349 30 355.674 30 347.371	30 352.147	30 347.133 30 357.351 30 355.672 30 347.376	8.4 -2.4 2.1 -4.9
10	1	10	9	0	9	17/2 19/2 21/2 23/2	15/2 17/2 19/2 21/2	32 402.705 32 412.699 32 411.252 32 403.204	32 407.792	32 402.704 32 412.703 32 411.256 32 403.201	1.5 -4.5 -4.0 2.9
10	0	10	9	1	9	17/2 19/2 21/2 23/2	15/2 17/2 19/2 21/2	20 907.175 20 899.656 20 897.548 20 903.518	20 901.387	20 907.176 20 899.651 20 897.542 20 903.516	-0.5 4.8 6.1 2.3
11	0	11	10	1	10	19/2 21/2 23/2 25/2	17/2 19/2 21/2 23/2	24 097.754 24 090.536 24 088.938 24 094.490	24 092.363	24 097.764 24 090.536 24 088.933 24 094.491	-10.4 -0.4 5.4 -1.1
14	1	13	13	2	12	25/2 27/2 29/2 31/2	23/2 25/2 27/2 29/2	18 651.186 18 647.715 18 641.222 18 652.100	18 645.514	18 651.192 18 647.709 18 641.216 18 652.100	$ \begin{array}{r} -6.1 \\ 5.7 \\ 6.4 \\ -0.3 \end{array} $

To this end the three equations, which relate the observed coupling constants χ_{aa} , χ_{bb} and χ_{ab} to the principal axes coupling constants χ_{xx} , $\chi_{\beta\beta}$ and to the angle ϑ between the α -axis of the coupling tensor and the α -axis of the moment of inertia tensor were solved for ϑ , χ_{xx} , and $\chi_{\beta\beta}$ (compare Figure 7).

$$\chi_{aa} = \cos^{2}(a \alpha) \chi_{\alpha\alpha} + \cos^{2}(a \beta) \chi_{\beta\beta}
= \cos^{2}(\theta) \chi_{\alpha\alpha} + \sin^{2}(\theta) \chi_{\beta\beta}, \qquad (3)$$

$$\chi_{bb} = \cos^{2}(b \alpha) \chi_{\alpha\alpha} + \cos^{2}(b \beta) \chi_{\beta\beta}
= \sin^{2}(\theta) \chi_{\alpha\alpha} + \cos^{2}(\theta) \chi_{\beta\beta}, \qquad (4)$$

$$\chi_{ab} = \cos(a\alpha)\cos(b\alpha)\chi_{\alpha\alpha} + \cos(a\beta)\cos(b\beta)\chi_{\beta\beta}$$
$$= \sin(\theta)\cos(\theta)(\chi_{\beta\beta} - \chi_{\alpha\alpha}). \tag{5}$$

The combination of (5) with the difference between (4) and (3) leads to the equation for ϑ :

$$\vartheta = (1/2) \arctan \left[\frac{2 \chi_{ab}}{\chi_{bb} - \chi_{aa}} \right]. \tag{6}$$

Finally, insertion of ϑ into (3) and (4) leads to $\chi_{\alpha\alpha}$ and $\chi_{\beta\beta}$. Our results are presented in Table 5 and pictorially in Figure 7.

As is seen from Fig. 7, the quadrupole coupling tensor is closely aligned to the C-Br-bond. This feature was expected, since the elements of the quadrupole coupling tensor are closely related to the second derivatives of the intramolecular Coulomb potential caused by the charge distribution outside the nucleus (see above).

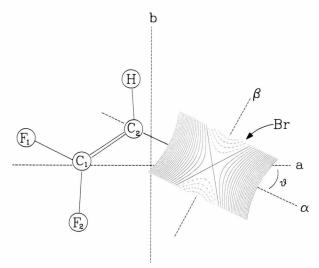


Fig. 7. Assumed structure of $F_2C=CHBr$ with the principal inertia axes a and b and the principal axes α and β of the bromine nuclear quadrupole coupling tensor. The angle β is the angle between the a- and the α -axis. Since χ_{ab} was accessible due to accidental degeneracies it could be determined experimentally with high accuracy. The hyperbolas indicate isopotential curves of the quartic contribution to the intramolecular Coulomb potential which arises from the extranuclear charge distribution. Dashed curves correspond to a negative potential.

It is now interesting to compare the bromine coupling tensors observed here with their values in $H_2C=CHBr$ [11] and $H_3C-HC=CHBr$ [12], which are also given in Table 5 for comparison.

While substitution of hydrogen by the methyl group has only a small effect on the electric field gradient or quadrupole coupling tensor, fluoride substitution causes considerable changes. Within a simplified LCAO-molecular orbital description [13] these changes are directly related to the p-orbital densities (bond order matrix elements), $P_{\alpha\alpha}$, $P_{\beta\beta}$, etc. by

$$\chi_{\alpha\alpha} = h^{-1} e q_{n10} Q \left[P_{\alpha\alpha} - \frac{P_{\beta\beta} + P_{\gamma\gamma}}{2} \right]$$
 (and cyclic permutations). (7)

Here q_{n10} is the expectation value for the second derivative of the Coulomb potential which would be caused by an electron in a valence shell p-orbital of the bromine. With eQq_{n10}/h values from the work of King and Jaccerino [14] (-769.756 MHz for ⁷⁹Br and -643.033 MHz for ⁸¹Br) and with the additional assumption that the in-plane p-orbital perpendicular to the C-Br-bond is doubly occupied, i.e. $P_{\beta\beta} = 2$, bromine p-densities were derived from the experimental coupling constants according to (7). They too are

presented in Table 5. As is seen from these densities, the main effect of F substitution, at least within the approximations which lead to (7), is to reduce the electron density in the p-orbital in bond direction. This appears intuitively pleasing since the electronegative F-atoms are expected to pull electrons in their direction along the σ -bonds.

For comparison we did also carry out ab initio calculations at the proposed microwave structures, [15, 16] and this work. To this end we did run the Gaussian 88 program of Pople and coworkers [17]. The STO-3 G basis was used. The results are also presented in Table 5. For the conversion from the ab initio field gradients (in atomic units) to the quadrupole coupling constants (in MHz) we have used $-98.25 \, \mathrm{MHz/a.u.}$ for $^{79}\mathrm{Br}$ and $-78.65 \, \mathrm{MHz/a.u.}$ for $^{81}\mathrm{Br}$. These values would correspond to bromine nuclear quadrupole moments of

$$Q^* = 0.418 \cdot 10^{-24} \text{ cm}^2 \text{ for } ^{79}\text{Br}$$
 and $Q^* = 0.335 \cdot 10^{-24} \text{ cm}^2 \text{ for } ^{81}\text{Br}$.

respectively. They were fitted for best reproduction of the experimental data and should be regarded as basis set dependent conversion factors rather than the real nuclear quadrupole moments.

For the p-orbitals perpendicular to the C-Br-bond the STO-3G gross p-populations differ from the Townes-Dailey values only by 0.3 to 0.5%. They are systematically lower. The differences of the p-densities in bond direction are slightly larger. Here the STO-3G values are systematically by about 10% lower than the Townes-Dailey results. It appears that the bromine nuclear quadrupole coupling constants can be predicted within about $\pm 2\%$ from STO-3G wavefunctions. The slightly larger discrepancies between the experiment and the STO-3G prediction which are observed in the case of trans- $H_3C-CH=CHBr$ are probably due to the larger experimental uncertainties in the early microwave spectroscopic investigation.

B) Molecular Structure

In principle, microwave spectroscopy provides one of the most accurate methods for the evaluation of molecular structures [18]. This structural information is contained in the rotational constants. Each experimental rotational constant provides one equation of condition which must be fulfilled by the structural parameters. Unfortunately, in planar molecules the

Table 2. Assigned rotational transitions for the vibronic ground state of $F_2C=CH^{81}Br$. Only μ_b -type transitions could be observed. The calculated frequencies were obtained from the molecular parameters presented in Table 4 by numerical diagonalization of the Hamiltonian matrix corresponding to (1). As experimental frequencies we present our microwave Fourier transform results. They were directly fitted to the observed transient emission signals [26].

J' 1	K'_a	K_c'	→ <i>J</i>	K_a	$K_{\rm c}$	F'	F	v _{exp} [MHz]	v _{center} [MHz]	v _{calc.} [MHz]	v _{expcalc} . [kHz]
μ_b -t	pe-	Q-b	rancl	n-tra	ansitio	ons					
2	1	1	2	0	2	5/2	5/2	9 580.750	9 622.208	9 580.747	3.0
3	1	2	3	0	3	5/2 7/2 9/2	5/2 7/2 9/2	9 873.181 9 862.981 9 896.214	9 886.708	9 873.190 9 862.982 9 896.217	-8.7 -0.7 -2.8
3	2	1	3	1	2	5/2 9/2	5/2 9/2	27 583.826 27 612.279	27 589.549	27 583.833 27 612.277	-2.6 -7.1 2.4
4	1	3	4	0	4	5/2 7/2 9/2 11/2	5/2 7/2 9/2 11/2	10 261.832 10 236.418 10 225.818 10 257.153	10 247.507	10 261.829 10 236.421 10 225.810 10 257.150	2.7 -2.9 7.6 2.7
5	1	4	5	0	5	7/2 9/2 11/2 13/2	7/2 9/2 11/2 13/2	10 726.017 10 701.692 10 695.277 10 720.450	10 711.452	10 726.016 10 701.696 10 695.277 10 720.449	$ \begin{array}{r} 0.8 \\ -3.5 \\ -0.2 \\ 1.1 \end{array} $
5	2	3	5	1	4	7/2 11/2 13/2	7/2 11/2 13/2	26 909.344 26 887.921 26 904.820	26 897.937	26 909.346 26 887.918 26 904.821	-1.9 2.9 -0.9
5	2	4	5	1	5	7/2 9/2 11/2 13/2	7/2 9/2 11/2 13/2	29 410.316 29 367.571 29 355.773 29 398.073	29 381.633	29 410.318 29 367.578 29 355.776 29 398.070	$ \begin{array}{r} -2.4 \\ -6.8 \\ -3.0 \\ 2.6 \end{array} $
6	1	5	6	0	6	9/2 11/2 13/2 15/2	9/2 11/2 13/2 15/2	11 300.323 11 278.246 11 272.733 11 295.546	11 286.882	11 300.325 11 278.246 11 272.731 11 295.546	$ \begin{array}{r} -2.4 \\ 0.1 \\ 1.8 \\ 0.0 \end{array} $
6	2	4	6	1	5	9/2 11/2 13/2 15/2	9/2 11/2 13/2 15/2	26 480.788 26 472.240 26 469.650 26 479.246	26 474.965	26 480.783 26 472.239 26 469.654 26 479.238	4.3 0.5 -4.0 8.2
6	2	5	6	1	6	9/2 11/2 13/2 15/2	9/2 11/2 13/2 15/2	29 926.947 29 897.522 29 882.022 29 916.346	29 902.421	29 926.954 29 897.516 29 882.024 29 916.351	$ \begin{array}{r} -7.2 \\ 6.0 \\ -1.7 \\ -4.6 \end{array} $
7	1	6	7	0	7	11/2 13/2 15/2 17/2	11/2 13/2 15/2 17/2	11 995.696 11 974.734 11 970.200 11 991.955	11 983.397	11 995.698 11 974.735 11 970.201 11 991.957	-1.9 -0.6 -0.7 -2.4
7	2	5	7	1	6	11/2 13/2 15/2 17/2	11/2 13/2 15/2 17/2	26 023.020 26 018.870 26 017.123 26 022.709	26 019.768	26 023.026 26 018.867 26 017.123 26 022.705	$ \begin{array}{r} -6.2 \\ 3.3 \\ -0.1 \\ 4.6 \end{array} $
7	2	6	7	1	7	13/2 15/2 17/2	13/2 15/2 17/2	30 500.941 30 495.305 30 524.691	30 512.369	30 500.935 30 495.313 30 524.687	$ \begin{array}{r} 6.1 \\ -7.6 \\ 4.3 \end{array} $
8	2	6	8	1	7	13/2 15/2 17/2 19/2	13/2 15/2 17/2 19/2	25 551.526 25 553.930 25 548.691 25 556.716	25 549.452	25 551.529 25 553.928 25 548.689 25 556.712	-2.9 1.9 1.5 3.2
8	2	7	8	1	8	13/2 15/2 17/2 19/2	13/2 15/2 17/2 19/2	31 227.946 31 201.860 31 197.453 31 223.555	31 212.304	31 227.952 31 201.861 31 197.448 31 223.550	-5.8 -0.6 4.9 5.3
9	1	8	9		9	15/2 17/2 19/2 21/2	15/2 17/2 19/2 21/2	13 788.642 13 772.991 13 764.057 13 790.800	13 782.048	13 788.632 13 772.991 13 764.051 13 790.805	9.8 0.2 6.0 -5.0
9	2	7	9	1	8	15/2 17/2 19/2 21/2	15/2 17/2 19/2 21/2	25 086.027 25 074.489 25 087.882 25 082.734	25 082.855	25 086.027 25 074.488 25 087.889 25 082.732	0.0 1.3 -7.4 2.3

Table 2 (continued)

J'	K'_a	K'_c	$\rightarrow J$	K_{ι}	K_c	F'	F	v _{exp} [MHz]	v _{center} [MHz]	v _{calc.} [MHz]	v _{expcalc.} [kHz]
9	2	8	9	1	9	15/2 17/2 19/2	15/2 17/2 19/2	32 016.415 31 992.415 31 989.678	32 002.993	32 016.418 31 992.421 31 989.675	-3.3 -5.9 3.0
10	2	8	10	1	9	17/2 19/2 21/2 23/2	17/2 19/2 21/2 23/2	24 639.354 24 639.504 24 638.555 24 640.165	24 640.057	24 639.359 24 639.497 24 638.546 24 640.162	-4.2 7.4 8.9 2.8
10	2	9	10	1	10	17/2 19/2 21/2 23/2	17/2 19/2 21/2 23/2	32 898.277 32 876.418 32 872.895 32 895.164	32 885.080	32 898.277 32 876.416 32 872.901 32 895.160	-0.1 1.7 -6.3 3.9
b)	μ _ь -1	ype	-R-br	anc	:h-tra	nsitions					
4	1	4	3	0	3	5/2 7/2 9/2 11/2	3/2 5/2 7/2 9/2	19 357.167 19 353.137 19 343.681 19 342.282	19 344.837	19 357.173 19 353.139 19 343.674 19 342.274	-5.5 -1.9 7.3 7.8
5	1	5	4	0	4	7/2 9/2 11/2 13/2	5/2 7/2 9/2 11/2	21 633.814 21 642.754 21 635.180 21 634.964	21 638.308	21 633.808 21 642.747 21 635.173 21 634.952	5.7 6.5 7.2 11.6
6	1	6	5	0	5	9/2 11/2 13/2 15/2	7/2 9/2 11/2 13/2	23 856.327 23 858.595 23 862.356 23 857.605	23 861.407	23 856.330 23 858.610 23 862.351 23 857.609	-2.4 -14.4 4.9 -4.3
7	1	7	6	0	6	11/2 13/2 15/2 17/2	9/2 11/2 13/2 15/2	26 019.155 26 027.272 26 024.706 26 018.425	26 022.436	26 019.164 26 027.275 26 024.707 26 018.423	-8.7 -3.6 -1.0 2.6
7	0	7	6	1	6	11/2 15/2 17/2	9/2 13/2 15/2	11 136.921 11 125.703 11 129.534	11 128.892	11 136.916 11 125.706 11 129.536	5.3 -2.6 -1.7
8	1	8	7	0	7	13/2 15/2 17/2 19/2	11/2 13/2 15/2 17/2	28 127.468 28 135.900 28 134.175 28 127.242	28 131.311	28 127.474 28 135.895 28 134.185 28 127.240	-6.4 5.0 -9.7 2.2
8	0	8	7	1	7	13/2 15/2 17/2 19/2	11/2 13/2 15/2 17/2	14 276.895 14 270.861 14 268.078 14 272.930	14 271.621	14 276.903 14 270.869 14 268.082 14 272.935	-7.6 -8.1 -4.4 -5.2
9	1	9	8	0	8	17/2 19/2 21/2	15/2 17/2 19/2	30 203.687 30 202.415 30 195.322	30 199.325	30 203.693 30 202.416 30 195.312	-5.8 -1.3 10.1
10	1	10	9	0	9	17/2 19/2 21/2 23/2	15/2 17/2 19/2 21/2	32 234.634 32 242.904 32 241.835 32 234.909	32 238.778	32 234.636 32 242.907 32 241.835 32 234.910	$ \begin{array}{r} -1.8 \\ -2.6 \\ -0.2 \\ -0.8 \end{array} $
10	0	10	9	1	9	17/2 19/2 21/2 23/2	15/2 17/2 19/2 21/2	20 610.056 20 603.822 20 601.932 20 607.111	20 605.280	20 610.060 20 603.809 20 601.921 20 607.094	-4.3 12.6 10.9 16.8
11	0	11	10	1	10	19/2 21/2 23/2 25/2	17/2 19/2 21/2 23/2	23 774.404 23 768.402 23 766.929 23 771.779	23 769.961	23 774.407 23 768.406 23 766.929 23 771.780	$ \begin{array}{r} -2.4 \\ -3.6 \\ -0.3 \\ -0.3 \end{array} $
14	1	13	13	2	12	25/2 27/2 29/2 31/2	23/2 25/2 27/2 29/2	18 128.179 18 126.932 18 119.798 18 129.615	18 123.482	18 128.177 18 126.932 18 119.806 18 129.611	2.2 0.5 -8.0 3.8

Table 3. Vibronic ground state parameters for $F_2C=CH^{79}Br$. They result from the simultaneous fit of the rotational constants, the centrifugal distortion constants and the Br nuclear quadrupole coupling constants to the observed line frequencies listed in Table 1.

$ A \\ B \\ C \\ \chi_{aa} \\ \chi_{bb} - \chi_{c} \\ \chi_{ab} $	= 145 $= 127$ $= 45$	32.662 (9)) MHz	D_{JK}^{J} D_{K} δ_{J}	= 0.1729 $= 2.262$ $= 9.56$ $= 0.0208$ $= -0.00333$	(8) kHz (7) kHz (19) kHz (1) kHz (8) kHz				
Correla	tion matrix	:								
1.00										
0.17	1.00									
0.04	0.87	1.00								
0.16	0.89	0.89	1.00							
0.29	0.49	0.46	0.63	1.00						
0.81	-0.13	-0.25	-0.19	-0.24	1.00					
0.24	0.22	-0.26	-0.06	-0.06	0.28	1.00				
0.26	0.56	0.48	0.68	-0.72	0.06	0.00	1.00			
0.22	0.00	-0.03	0.00	0.07	0.19	0.05	0.05	1.00		
0.01	0.04	0.05	0.04	0.05	-0.02	-0.01	0.04	0.14	1.00	
0.21	0.13	0.00	0.09	0.00	0.25	0.25	0.07	-0.11	-0.01	1.00

Mean deviation: 6.5 kHz

Number of assigned transitions: 41 Number of hfs-components: 148

Table 4. Vibronic ground state parameters for $F_2C=CH^{81}Br$. They result from the simultaneous fit of the rotational constants, the centrifugal distortion constants and the Br nuclear quadrupole coupling constants to the observed frequencies listed in Table 2.

$ A B C C \chi_{aa} \chi_{bb} - \chi_{cc} \chi_{ab} $	= 1439.	835 (8) N	MHz MHz MHz MHz	$\begin{array}{rcl} D_J &=& \\ D_{JK} &=& \\ D_K &=& \\ \delta_J &=& \\ R_6 &=& \end{array}$	2.266 9.58 0.0203	(7) kHz (6) kHz 20) kHz (1) kHz (7) kHz				
Correlatio	n matrix:									
1.00 0.09 -0.02 0.09 0.25 0.83 0.25 0.24 0.03 0.05 0.27	1.00 0.90 0.91 0.52 -0.22 0.16 0.59 -0.03 0.00 0.08	1.00 0.90 0.51 -0.32 -0.25 0.52 -0.06 -0.01	1.00 0.66 -0.26 -0.09 0.70 -0.04 0.01 0.05	1.00 -0.27 -0.10 0.73 -0.06 0.02 -0.14	1.00 0.31 -0.10 0.07 0.03 0.35	$ \begin{array}{c} 1.00 \\ -0.02 \\ 0.07 \\ 0.01 \\ 0.20 \end{array} $	1.00 -0.03 0.01 -0.01	1.00 -0.02 0.06	1.00	1.00

Mean deviation: 5.4 kHz Number of assigned transitions: 39 Number of hfs-components: 144

three equations corresponding to the measured rotational constants are not independent, since they must obey the planarity condition (within the rigid rotor approximation each rotational constant can be calculated from the others by $C^{-1} = A^{-1} + B^{-1}$).

Thus, for planar molecules, each set of three rotational constants, experimentally determined for an in-

dividual isotopic species, is equivalent to only two equations of condition for the structural parameters. In our case the situation is even worse, since the heavy bromine atoms are placed almost exactly on the *a*-axis of the principal inertia axes tensor. This essentially reduces the useful information contained in our measured rotational constants to at most three equations

Table 5. Diagonal elements of the bromine nuclear quadrupole coupling tensors in their own principal axes system (given in MHz) and the corresponding p-orbital densities (or bond order matrix elements) as calculated from (7). The $P_{\beta\beta}$ -values were kept fixed to 2.0000 in order to account for the assumption that these electrons do not participate in the chemical bond.

The corresponding STO-3G results are presented in the last two columns. For the conversion from the field gradients to the experimental units we used -98.25 MHz/a.u. and -78.65 MHz/a.u. as conversion factors for ⁷⁹Br and ⁸¹Br, respectively.

The STO-3G p-orbital populations, P_{aa} etc., are the gross orbital populations from the Mulliken population analysis.

This work			STO-3	G		
$F_2C = CH^{79}Br$	$F_2C=CH^8$	Br	$F_2C = 0$	CH ⁷⁹ Br	F ₂ C	C=CH ⁸¹ Br
615.711(20)	514.425(17)	605.	66	4	84.84
-322.400(14)	-269.376(14)	-314.	20	-2	51.52
-293.311(11)	-245.049(13)	-291.	46	-2	33.32
$-24.534(2)^{\circ}$	-24.536(2)°				
1.1874	1.1875			1.1024	10	
2.0000	2.0000			1.989		
(assumed)	(assum	ned)				
1.9748	1.9748			1.9690	00	
	H ₂ C:	=CI	HBr			
⁷⁹ Br [11]	⁸¹ Br	[⁹ Br]	[STO-3	G]	[81Br]
543.81	453.61	5	81.95			465.85
-289.80	-241.44	-3	07.32			-246.01
-254.02	-212.17	-2	74.63			-219.84
1.2780	1.2794			1.13332	2	
2.0000	2.0000			1.99070)	
(assumed	d) (assume	d)				
1.9690	1.9697			1.96189)	
	trans-H ₃ C	-CI	H=CHE	Br		
⁷⁹ Br [12]	⁸¹ Br	[⁷⁹ Br]	[STO-3	G]	[81Br]
557.7	450.3	5	82.23			466.08
	-236.8		05.00			-244.16
	-213.5		77.23			-221.92
1.2571	1.2877			1.13584	1	
2.0000	2.0000			1.98969)	
(assume		ed)				
1.9635	1.9758	,		1.96476	ń	

of condition, one corresponding to the A constant which is essentially equal for both bromine species, and two corresponding to the two different B constants.

In practice only two structural parameters could be fitted to the observed rotational constants simultaneously.

In view of our interest in approximate values of the rotational constants of the remaining isotopic species

Table 6. Assumed structure for 1-bromo-2,2-difluoroethylene. The bond angles $F_1-C_1=C_2$ and $Br-C_2=C_1$ were fitted to the observed rotational constants for the ^{79}Br -species, $A(^{79}Br)=10.717$ 208 GHz and $B(^{79}Br)=1.453$ 478 GHz, respectively. During this fit the angle $F_2-C_1=C_2$ was kept 1° larger than the angle $F_1-C_1=C_2$ in order to account for "F2··· Br repulsion". All other parameters were kept fixed. The calculated rotational constants presented in Table 7 were obtained from this structure with the fitted angles rounded to four decimals.

Bond distances	
$C_1 = C_2$ $C_2 - H$ $C_1 - F_1$ $C_1 - F_2$ $C_2 - Br$	1.310 Å 1.079 Å 1.320 Å 1.323 Å 1.882 Å
Bond angles	
$\begin{array}{l} H - C_2 = C_1 \\ F_1 - C_1 = C_2 \\ F_2 - C_1 = C_2 \\ Br - C_2 = C_1 \end{array}$	123.5° 124.1318° (optimized) 125.1318° (set as $F_1-C_1=C_2+1$ °) 121.5132°

Table 7. Calculated rotational constants for

$$\begin{array}{ll} F_2C\!=\!CH^{79}Br, & F_2C\!=\!CH^{81}Br, \\ F_2^{13}C\!=\!CH^{79}Br, & F_2C\!=\!^{13}CH^{79}Br, \\ F_2^{13}C\!=\!CH^{81}Br, & F_2C\!=\!^{13}CH^{81}Br. \end{array}$$

The values were obtained within the rigid rotor approximation from the structure presented in Table 6. For the prediction of the $^{13}\mathrm{C}$ spectra, the calculated C constants should be reduced by about 640 kHz in order to account for the inertial defect. From fits with other sets of present values we expect the predicted $^{13}\mathrm{C}$ rotational constants to be accurate within ± 5 MHz (our predictions did fall into a range of only ± 1 MHz). Note how well all six experimental rotational constants are reproduced from the assumed structure even though only $A(^{79}\mathrm{Br})$ and $B(^{81}\mathrm{Br})$ were used in the fit of the bond angles.

Rotat. const.	$F_2C = CH^{79}Br$	$F_2^{13}C = CH^{79}Br$	$F_2C = {}^{13}CH^{79}Br$
A	10.717208 GHz	10.715761 GHz	10.574276 GHz
B	1.453478 GHz	1.444322 GHz	1.452835 GHz
C	1.279898 GHz	1.272772 GHz	1.277337 GHz
	F ₂ C=CH ⁸¹ Br	$F_2^{13}C = CH^{81}Br$	$F_2C = {}^{13}CH^{81}Br$
A	10.717208 GHz	10.715761 GHz	10.574268 GHz
B	1.439469 GHz	1.430267 GHz	1.438777 GHz
C	1.269022 GHz	1.261844 GHz	1.266458 GHz

we ventured to exploit already this limited structural information for predictive purposes.

Several fits including two free structural parameters were carried out. The results which were most pleasing to us in view of known structural information for related molecules [19-22] are presented in Tables 6 and 7. To derive this structure we kept all bond lengths fixed to values slightly shorter than reported for related molecules. This was done in order to account for the shrinking in adjacent bonds, which is typical for the substitution of hydrogen atoms by halogen atoms [23].

The H-C=C bond angle was kept fixed to 123.5° i.e. about the value in $F_2C = CHCl$ [24] (all rotational constants depend very little on its exact value). The $F_2-C_1=C_2$ angle, where F_2 is the fluorine cis to bromine, was set as 1° larger than the $F_1-C_1-C_2$ angle in order to account for F... Br repulsion, and finally the angles $F_1-C_1=C_2$ and $Br-C_2=C_1$ were fitted to the experimental rotational constants A and B for the ⁷⁹Br species. Essentially the same procedure was carried out with $\angle F_1 - C_1 = C_2 = \angle F_2 - C_1 = C_2$ and with $\angle F_1 - C_1 = C_2 = \angle F_2 - C_1 = C_2 + 2^\circ$, but our proposed structure obtained for the 1° difference is slightly better in reproducing all six observed rotational constants. Further fits with slightly increased bond lengths were also carried out in order to get some feeling for the uncertainties in the rotational constants predicted for the monosubstituted ¹³C-species.

- [1] V. W. Laurie and D. T. Pence, J. Chem. Phys. 38, 2693
- [2] D. de Kerckhove Varent, Ann. Soc. Sci. Bruxelles 84, 277 (1970).
- [3] H. D. Rudolph, Z. Angew. Phys. 13, 401 (1961).
- [4] R. P. Blickensderfer, J. H. S. Wang, and W. H. Flygare,
- J. Chem. Phys. **51**, 3196 (1969).
 [5] P. Kisliuk and C. H. Townes, Nat. Bur. Stand. Circ. 1952, 518.
- [6] B. P. van Eijck, J. Mol. Spectr. 53, 246 (1974).
- V. Typke, J. Mol. Spectr. 63, 170 (1976).
- [8] W. Gordy and R. L. Cook, Microwave Molecular Spectra, Chapt. IX, 3rd ed., John Wiley and Sons, New York
- [9] H. P. Benz, A. Bauder, and H. H. Günthard, J. Mol. Spectr. 21, 156 (1966).
- [10] Author: J. Gripp, Dissertation, Kiel 1989.
- [11] Loc. cit. [2].
- [12] R. A. Beaudet, J. Chem. Phys. 50, 2002 (1969).
- [13] J. Mjöberg and S. Ljungren, Z. Naturforsch. 28a, 729 (1973).

In all these fits the predicted ¹³C rotational constants varied only within a range of ± 1 MHz. Therefore, if we include an additional uncertainty of +4 MHz to account for differences in the effects of zero point vibrations, we believe that a total uncertainty in the rotational constants of ± 5 MHz will provide reasonable bounds for searching the hitherto unassigned ¹³C transitions.

With the dramatic increase in sensitivity gained by the combination of microwave Fourier transform spectroscopy and molecular beam techniques, such a search should be feasible even with ¹³C species in natural abundance. It is planned at our laboratory in the near future.

Acknowledgement

We are glad to acknowledge financial support by Deutsche Forschungsgemeinschaft. Dr. H. Krause kindly carried out the ab initio calculations. We are also grateful for free computer time, granted by the computer center of the University Kiel.

We would like to thank Prof. Dr. A. Guarnieri for critically reading the manuscript.

- [14] J. G. King and V. Jaccerino, Phys. Rev. 94, 1610 (1954).
- [15] Loc. cit. [2].
- [16] Loc. cit. [12]
- [17] Gaussian 88, M. J. Frisch, M. Head-Gordon, H. B. Schlegel, K. Raghavachari, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, E. M. Fluder, E. S. Topiol, and J. A. Pople, Gaussian, Inc., Pittsburgh PA. 1988.
- [18] Loc. cit. [8], Chapt. XIII.
- [19] Loc. cit. [1].
- [20] R. G. Stone and W. H. Flygare, J. Chem. Phys., 49, 1943 (1968).
- [21] R. G. Stone and W. H. Flygare, J. Mol. Spectr. 32, 233 (1969).
- [22] Loc. cit. [2].
- [23] H. A. Bent, J. Chem. Phys. 33, 1258 (1960).
- [24] Loc. cit. [20].
- [25] J. Haekel and H. Mäder, Z. Naturforsch. 43a, 203 (1988).
- [26] Loc. cit. [25].